
 Stefano Marinelli
 included in  Freebsd  Ipv6  Server  Networking  E-Mail  Rspamd  Hosting 

Tutorial  Security  Dovecot  Opemsmtpd  Ownyourdata

 08-03-2024  About 4800 words  23 minutes

CONTENTS 

The main power of the Internet has always been one: decentralization.

Ever since I’ve been able to, I’ve always managed my email boxes independently and

provided mail hosting services to my clients. Over the years, things have become

increasingly complex: on one hand, there’s been a disproportionate increase in spam, and

on the other, big players (like Google and Microsoft) have tried to gain a lot of ground in

managing these services. Private users can obtain many free services, and business users

no longer need to worry about the underlying infrastructure. However, in my opinion, the

price to pay is very high: the loss of ownership of one’s data.

These operators, in fact, use full access to our emails to improve their services or analyze

us with the aim of selling us advertisements.

Make Your Own E-Mail Server - Part 1 - FreeBSD,
OpenSMTPD, Rspamd and Dovecot Included

https://it-notes.dragas.net/categories/freebsd/
https://it-notes.dragas.net/categories/freebsd/
https://it-notes.dragas.net/categories/ipv6/
https://it-notes.dragas.net/categories/ipv6/
https://it-notes.dragas.net/categories/server/
https://it-notes.dragas.net/categories/server/
https://it-notes.dragas.net/categories/networking/
https://it-notes.dragas.net/categories/networking/
https://it-notes.dragas.net/categories/e-mail/
https://it-notes.dragas.net/categories/e-mail/
https://it-notes.dragas.net/categories/rspamd/
https://it-notes.dragas.net/categories/rspamd/
https://it-notes.dragas.net/categories/hosting/
https://it-notes.dragas.net/categories/hosting/
https://it-notes.dragas.net/categories/tutorial/
https://it-notes.dragas.net/categories/tutorial/
https://it-notes.dragas.net/categories/tutorial/
https://it-notes.dragas.net/categories/security/
https://it-notes.dragas.net/categories/security/
https://it-notes.dragas.net/categories/dovecot/
https://it-notes.dragas.net/categories/dovecot/
https://it-notes.dragas.net/categories/opemsmtpd/
https://it-notes.dragas.net/categories/opemsmtpd/
https://it-notes.dragas.net/categories/ownyourdata/
https://it-notes.dragas.net/categories/ownyourdata/

As often happens in these cases, many users appreciate this type of approach and have

switched to the services of big players, causing a progressive increase in the level of

influence that these companies can have on something free and decentralized like email.

In my opinion, it still makes sense to manage one’s own mail servers. Standards evolve, and

it is therefore appropriate to follow innovations, adapt to best practices, and secure one’s

services and users.

Over the last ten years, I have also used and installed various Zimbra OSE servers. Aside

from a few minor issues, the setup has proven stable and reliable. Recently, the company

that develops this excellent tool has decided to no longer provide packages for the Open

Source version. They can be generated with scripts provided by some (great!) users, but

they cannot be a solid and stable base in the long term.

I have therefore decided to gradually return to a modular, adaptable, customizable, and

updatable mail host setup without worries or headaches. Such a system can include any

kind of service (including webmail, integration with caldav/carddav, etc.) and it will be

possible to disable what is not strictly necessary. Safer and more secure.

This will be the first in a series of articles, and at the end of this reading, you will have a

secure, modern, reliable, and modular mail server. The instructions are designed for

FreeBSD and related jails but with very few modifications can be applied to any BSD as well

as Linux or other similar operating systems.

Setup Planning

Over the years, I’ve used many different SMTP servers. Originally, the good old Sendmail.

Subsequently, and for many years, I used Exim, also because it was the default system in

Debian. I then migrated almost all setups towards Postfix, probably the most widespread

smtp server on the net, and I never had any particular problems. In recent years, I have

decided to use, when possible, the excellent OpenSMTPD. Being based on OpenBSD and

easily installable on other OSes, it shares the primary concepts of security and reliability of

OpenBSD as well as the syntax (both in command line and in configuration files) of all other

OpenBSD tools. For this type of setup, I will use opensmtpd.

The choice to use FreeBSD (rather than OpenBSD) stems from two main factors:

1. The possibility of dividing into jails, physically separating the various services and

minimizing dependencies.

2. The possibility of using ZFS, with all the advantages it brings: the ability to take

snapshots, the ability to perform backups quickly and efficiently, and the ability to

migrate entire jails without particular problems.

The other tools that will be used are:

Rspamd - one of the best integrated systems for checking incoming mail.

Customizable, adaptable, and modular, it also provides interesting monitoring systems

https://www.zimbra.com/
https://github.com/ianw1974/zimbra-build-scripts
https://man.freebsd.org/cgi/man.cgi?sendmail
https://www.exim.org/
https://www.postfix.org/
https://www.opensmtpd.org/
https://wiki.freebsd.org/Jails
https://rspamd.com/

on the type of incoming and outgoing mail.

Redis - which will be used by rspamd to manage its “memory”.

Dovecot and Sieve - for delivering mail to local mailboxes as well as allowing remote

email consultation (via imap) and enabling the setting of rules thanks to Pigeonhole

Sieve.

The users of the mail server will not be “physical” users of the server itself, but virtual users,

totally unrelated to system users.

This article will be long and detailed. The process may seem complex at first glance, but in

reality, it’s simpler than one might think. In the classic Unix philosophy, each component

performs a task and does it well. Configuring the individual components separately will

ensure greater scalability, reliability, and resilience to updates as well as simpler debugging

compared to all-in-one solutions (like many of those found in convenient, ready-to-use

docker-compose.yaml files).

Installation and Configuration

I won’t describe the FreeBSD installation and configuration procedure. In my case, I

activated a VPS on Hetzner - in this situation, the smallest of the available ARM servers.

Yes, it’s possible to efficiently manage a mail server for several users on a machine costing

less than 4 euros a month. ZFS can be useful, but it’s not necessary for this type of setup.

The first step is therefore to choose a location to install everything. The main condition is

that the VPS/server/host must have at least one static public IP and, in 2024, I now consider

it necessary to have (at least) one IPv6 address. They must also be able to send/receive

mail on port 25, which is not guaranteed and not all VPS providers allow. Hetzner, for

example, blocks port 25 for new users.

Once you have identified and acquired the server on which to install everything, it’s

appropriate to check that the IPs (both IPv4 and IPv6) to be used are not on any of the

many blocklists/blacklists. My experience indicates that at least 60% of the IPs assigned to

me are on one or more of these lists, so the first step is to request delisting, to ensure

proper operation when the server is ready.

To Encrypt or Not to Encrypt?

A subsequent assessment is whether to use encryption for the data. Connections to and

from the mail server will always be encrypted, but it’s also possible to encrypt the data at

rest. In the case of FreeBSD, it’s possible to enable encryption for the entire installation (the

entire virtual disk will be encrypted, and ZFS (or UFS) will be created on top of it) or, in the

case of using ZFS, it will be possible to encrypt only the root dataset of the jails, the one

that will be used by BastilleBSD. In the first case, it will be necessary to enter the password

at every boot of FreeBSD, therefore connect via console at every restart and enter the

password. In the second case, FreeBSD will be able to boot but it will be necessary to

https://redis.io/
https://www.dovecot.org/
https://pigeonhole.dovecot.org/
https://pigeonhole.dovecot.org/

connect and enter the keys before mounting the BastilleBSD ZFS dataset. None of these

solutions will prevent unauthorized access to emails in case of machine compromise. The

main advantage will be “only” not to save the emails in clear on disks which, in the case of a

VM, will still be shared and managed by third parties. In the case of physical servers,

however, things will undoubtedly be different.

Encrypting the entire disk must be done directly during the FreeBSD installation phase, very

simply. As for the option to encrypt only the BastilleBSD dataset, you can proceed later, with

a command similar to:

zfs create -o encryption=on -o keylocation=prompt -o keyformat=passphrase

zroot/bastille

at every reboot, it will be necessary to enter the password and mount the datasets:

Configuring FreeBSD and BastilleBSD

After the installation of the OS, the first step is to configure IPv6 on the VPS. In the case of

Hetzner, unfortunately, they only provide a /64, so it will be necessary to segment the

assigned network. In this example, it will be divided into /72 subnetworks - to find valid

subclasses, it will be possible to use a calculator.

The /etc/rc.conf file should have entries similar to:

In short, keep the base address assigned by Hetzner, but change the prefix length to 72 -

thus giving the possibility of having other networks available.

It is now necessary to enable forwarding for IPv4 and IPv6. Add these lines to the
/etc/sysctl.conf file:

After reboot, test it:

ping6 google.com

If everything has been configured correctly, the ping will be executed and google.com will

reply.

Code

zfs load-key -r zroot/bastille
zfs mount -a



1
2

Code

ifconfig_vtnet0="DHCP"
ifconfig_vtnet0_ipv6="inet6 2a01:4f8:cafe:cafe::1 prefixlen 72"
ipv6_defaultrouter="fe80::1%vtnet0"



1
2
3

Code

net.inet.ip.forwarding=1
net.inet6.ip6.forwarding=1



1
2

https://subnettingpractice.com/ipv6-subnet-calculator.html

It will also be necessary to set up reverse DNS, otherwise many mail servers will reject our

emails. This must be done both for the IPv4 address and the designated IPv6 address

(within the class - an operation that can also be done after creating the jails, but before

starting to send email messages). Also, create the correct A and AAAA records on the DNS

for the “mail.example.com” domain.

The FreeBSD installer does not automatically update the operating system, so it is

appropriate to do so now:

freebsd-update fetch install

It seems, moreover, that there is still an old bug still present and manifesting when, on a

FreeBSD server installed in a VM based on KVM (thus also those of Hetzner), routing is

performed (as in our case) between VNET jails and host.

Adding this configuration to /boot/loader.conf will solve the problem:

It’s time to install and configure BastilleBSD. This handy tool will make managing jails much

simpler and more straightforward, and its configuration is well described on the project

page.

Bridge and Firewall

For some time now, I’ve been favoring the use of VNET jails for these types of setups. I

believe that having a complete network stack within the jails gives more freedom in

configuration, firewall management (applicable also within individual jails), and technical

possibilities (such as creating VPNs within the jails themselves, ensuring greater

portability).

I suggest creating a bridge on the FreeBSD server and placing all the jails within this bridge.

It will be enough to modify the /etc/rc.conf file and change/add:

Code

hw.vtnet.X.tso_disable="1"
hw.vtnet.tso_disable="1"
hw.vtnet.lro_disable="1"
hw.vtnet.X.lro_disable="1"
hw.vtnet.csum_disable="1"
hw.vtnet.X.csum_disable="1"



1
2
3
4
5
6

Code

cloned_interfaces="lo1 bridge0"
ifconfig_bridge0="inet 192.168.123.1 netmask 255.255.255.0"
ifconfig_bridge0_ipv6="inet6 2a01:4f8:cafe:cafe:100::1 prefixlen 72"
ipv6_gateway_enable="YES"
ipv6_activate_all_interfaces="YES"
gateway_enable="YES"



1
2
3
4
5
6

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=165059
https://bastillebsd.org/
https://bastillebsd.org/getting-started/
https://bastillebsd.org/getting-started/

Now let’s configure the firewall. In this example, I will use the IPv4 and IPv6 addresses that I

will later assign to the jails. Here’s an example of a working pf.conf :

At this point, it is advisable to reboot the machine, to be sure that everything comes back

up in the right way.

Creating the “nginx-proxy” and “redis” Jails

Let’s start with the first jail. It will be an nginx reverse proxy. At the moment it will not be

used as such but will be useful as a machine for generating certificates and, in the future, to

act as a reverse proxy for various internal web services.

bastille create -B nginx-proxy 14.0-RELEASE 192.168.123.2/24 bridge0

Once the jail is created, it will be necessary to modify some configurations. In the jail itself

(bastille console nginx-proxy), modify the /etc/rc.conf file and add the IPv4 gateway and

Code

ext_if="vtnet0"

set block-policy return
scrub in on $ext_if all fragment reassemble
set skip on lo
set skip on bridge0

table <jails> persist
IPv4 private address ranges
table <private> const { 10/8, 172.16/12, 192.168/16 }
nat on $ext_if from 192.168.123.0/24 to ! <private> -> ($ext_if:0)
nat on $ext_if from <jails> to any -> ($ext_if:0)
rdr-anchor "rdr/*"
#rdr via ipv4 to mail
rdr pass on $ext_if proto tcp from any to ($ext_if) port { 25, 465, 587, 14
#rdr via ipv4 to nginx-proxy
rdr pass on $ext_if proto tcp from any to ($ext_if) port { 80, 443 } -> 192

block in all
#PASS ICMP
pass in quick proto icmp from any to any
Pass ICMP on ipv6
pass quick proto ipv6-icmp
pass out quick keep state
antispoof for $ext_if inet
pass in inet proto tcp from any to any port ssh flags S/SA keep state
#Pass ipv6 to mail jail
pass in quick on $ext_if inet6 proto tcp from any to 2a01:4f8:cafe:cafe:100
#Pass ipv6 to nginx-proxy jail
pass in quick on $ext_if inet6 proto tcp from any to 2a01:4f8:cafe:cafe:100



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

IPv6 configurations, i.e., giving the address specified earlier in the pf.conf of the FreeBSD

server and as the gateway the IP address of the related bridge:

Restart nginx-proxy with bastille restart nginx-proxy , and you will be able to re-enter

the jail. At that point, ping google.com and ping6 google.com should work. The jail will

then be able to operate, responding on 80 and 443 both in IPv4 (thanks to the NAT

configured previously on the FreeBSD server) and in IPv6, being directly connected in

routing.

Now install the necessary software:

pkg install -y nginx py39-certbot py39-certbot-nginx

To automatically renew the certificates, add this line to /etc/periodic.conf :

It’s now possible to generate the certificate, which we will also use for all other exposed

services:

certbot certonly -d mail.example.com

Once the certificates are generated, we will need to make a small change as opensmtpd

(which we will install later in another jail) is (rightly) very restrictive on permissions:

chmod -R 400 /usr/local/etc/letsencrypt/archive/mail.example.com/

Now let’s create a jail for redis. I usually put it in a dedicated jail also in terms of

clustering/multi-server setup:

bastille create -B redis 14.0-RELEASE 192.168.123.4/24 bridge0

Also for the redis jail, it’s appropriate to set up the gateway, so in the /etc/rc.conf of the

jail:

I don’t configure IPv6 as it’s not necessary (this jail will only be reachable from the LAN) but

it’s possible to do so. Once the jail is restarted (bastille restart redis), it will be able to reach

the outside:

pkg install -y redis

Not wanting to disable the protected mode of redis and not wanting to open it without

authentication, it will be appropriate to modify the /usr/local/etc/redis.conf

Code

defaultrouter="192.168.123.1"
ifconfig_vnet0_ipv6="inet6 2a01:4f8:cafe:cafe:100::80 prefixlen 72"
ipv6_defaultrouter="2a01:4f8:cafe:cafe:100::1"



1
2
3

Code

weekly_certbot_enable="YES"



1

Code

defaultrouter="192.168.123.1"



1

configuration file and add the password and some options to optimize its use with rspamd:

Of course, set a unique password. Also, change the line concerning the bind:

Now execute:

Redis should be active and ready to receive connections.

The “mail” Jail

It’s time to create the jail with the main services:

bastille create -B mail 14.0-RELEASE 192.168.123.3/24 bridge0

and, also in this case, it will be necessary to enter the jail and modify some configurations in
/etc/rc.conf :

Once the jail is restarted, it will be possible to install the necessary packages:

pkg install -y rspamd opensmtpd opensmtpd-extras opensmtpd-extras-table-passwd

opensmtpd-filter-senderscore opensmtpd-filter-rspamd dovecot dovecot-

pigeonhole

It is now appropriate to give this jail an FQDN, as it will be the name with which it presents

itself when connecting to the outside. Just modify /etc/rc.conf :

The hostname should be equivalent to the reverse DNS set earlier, so the machine will

present itself with a name that, doing a reverse lookup, will correspond to the IP of origin.

Code

requirepass cafecafe
maxmemory 512mb
maxmemory-policy volatile-lru



1
2
3

Code

bind *



1

Code

service redis enable
service redis start



1
2

Code

defaultrouter="192.168.123.1"
ifconfig_vnet0_ipv6="inet6 2a01:4f8:cafe:cafe:100::25 prefixlen 72"
ipv6_defaultrouter="2a01:4f8:cafe:cafe:100::1"



1
2
3

Code

hostname="mail.example.com"



1

This jail does not contain the certificates that are present in the nginx-proxy jail. There are

various methods to share them, such as using rsync, putting them on an NFS share, etc.,

but the simplest in this case will be to do a bind mount between the two jails, an operation

that BastilleBSD can handle automatically.

Create the correct directory in the “mail” jail:

mkdir /usr/local/etc/letsencrypt

Exit the jail, shut it down, and modify the fstab file of the jail (e.g.,
/usr/local/bastille/jails/mail/fstab) by adding a line like this:

Start the jail, and at that point, the directory created earlier should display the directories

and certificates from the nginx-proxy jail.

Due to spammers who, year after year, become increasingly aggressive, many mail servers

require perfect configuration of the main sender authentication methodologies. Today, the

main (and now necessary, under penalty of message non-delivery) are SPF, DKIM, and

DMARC.

The first step is to generate a DKIM key for the domain(s) that will send mail from the server

we are configuring. This operation can be performed in a few steps, by placing the keys in

the /usr/local/etc/mail/dkim directory:

Since rspamd will take care of signing outgoing messages, it is appropriate that only the

related user be able to read the file with the private key.

Once the pair of keys has been created, it will be necessary to configure DNS to provide the

public key to mail servers that will request it. The record should look like this:

Once the record has been entered and propagated, it will be possible to test its correctness

through one of the many websites that offer this service, remembering that the selector we

have configured is “mail” (the first part of the record). Obviously, this is a free text, which

can be modified at will (but will then need to be specified in the rspamd configuration, later

on).

Code

/usr/local/bastille/jails/nginx-proxy/root/usr/local/etc/letsencrypt /usr/l



1

Code

mkdir /usr/local/etc/mail/dkim
cd /usr/local/etc/mail/dkim
openssl genrsa -out example.com.key 2048
openssl rsa -in example.com.key -pubout -out public.key
chmod 0400 example.com.key
chown rspamd *



1
2
3
4
5
6

Code

mail._domainkey TXT "v=DKIM1;k=rsa;p=your-public-key-goes-here"



1

https://mxtoolbox.com/spf.aspx
https://mxtoolbox.com/dkim.aspx
https://mxtoolbox.com/dmarc.aspx

Being in the DNS configuration phase, it will also be appropriate to create SPF and DMARC

records:

SPF record:

DMARC:

These records, obviously modified based on the chosen domain, are configured

conservatively but suitable for a test. Once the entire setup is in place, it will be possible to

handle things in a more restrictive manner.

The mail server users will be “virtual” users (i.e., not system users of the server), so all their

mail will be “handled” by a unique user, which needs to be created:

Let’s now create some files and directories, useful for the subsequent configuration:

Remove the current /usr/local/etc/mail/smtpd.conf and replace it with content like

this:

Code

example.com. IN TXT "v=spf1 a ip4:your.ip.address ip6:2a01:4f8:cafe:cafe:10



1

Code

_dmarc.example.com. IN TXT "v=DMARC1;p=none;pct=100;rua=mailto:postmaster@e



1

Code

pw user add vmail -u 2000 -d /var/vmail -s /usr/sbin/nologin
mkdir /var/vmail
chown vmail /var/vmail



1
2
3

Code

touch /usr/local/etc/mail/passwd
touch /usr/local/etc/mail/virtuals
mkdir /usr/local/etc/rspamd/local.d



1
2
3

Code

table passwd passwd:/usr/local/etc/mail/passwd
table virtuals file:/usr/local/etc/mail/virtuals

pki mail.example.com cert "/usr/local/etc/letsencrypt/archive/mail.example.
pki mail.example.com key "/usr/local/etc/letsencrypt/archive/mail.example.c

filter check_dyndns phase connect match rdns regex { '.*\.dyn\..*', '.*\.ds
 disconnect "550 no residential connections - Thou shalt not pass"

filter check_rdns phase connect match !rdns \
 disconnect "550 no rdns - Thou shalt not pass"

filter check_fcrdns phase connect match !fcrdns \



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

The beauty of OpenSMTPD lies in its simplicity. Essentially, that’s all there is to it, but here’s

an explanation of what this file does:

table passwd and table virtuals define tables for user credentials and virtual

domains/users, crucial for authentication and email forwarding/aliasing.
pki lines specify the SSL/TLS certificate and key for encrypted connections.

filter directives apply various checks and filters to incoming connections, including

dynamic DNS and reverse DNS validations, sender reputation scoring, and Rspamd

filtering.
listen lines configure the server to listen on all IPv4 and IPv6 addresses for

incoming SMTP and submission (port 587) connections, applying TLS and

authentication as specified.
action lines define actions for email delivery, using LMTP for local delivery based on

virtual mappings and setting up relay actions for outbound emails.
match rules determine how emails are processed, either delivered locally or relayed

externally based on source, destination, and authentication.

To test the newly inserted configuration, run smtpd -n .

 disconnect "550 no FCrDNS - Thou shalt not pass"

filter senderscore \
 proc-exec "/usr/local/libexec/opensmtpd/opensmtpd-filter-senderscore -b

filter rspamd proc-exec "/usr/local/libexec/opensmtpd/opensmtpd-filter-rspa

listen on 0.0.0.0 tls pki mail.example.com \
 filter { check_dyndns, check_rdns, check_fcrdns, senderscore, rspamd }

listen on ::0 tls pki mail.example.com \
 filter { check_dyndns, check_rdns, check_fcrdns, senderscore, rspamd }

listen on 0.0.0.0 port submission tls-require pki mail.example.com auth <p

listen on ::0 port submission tls-require pki mail.example.com auth <passw

listen on 0.0.0.0 port 465 smtps pki mail.example.com auth <passwd> filter

listen on ::0 port 465 smtps pki mail.example.com auth <passwd> filter rsp

action "local_mail" lmtp "/var/run/dovecot/lmtp" rcpt-to virtual <virtuals>
action "outbound" relay helo mail.example.com

match from any for domain example.com action "local_mail"
match for local action "local_mail"

match from any auth for any action "outbound"
match for any action "outbound"

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The next step is to configure Rspamd. Rather than modifying the base configuration files,

we’ll proceed by creating “overrides”, placing specific configurations in the directory

created earlier (/usr/local/etc/rspamd/local.d):

For Redis configuration in /usr/local/etc/rspamd/local.d/redis.conf :

For SPF settings in /usr/local/etc/rspamd/local.d/spf.conf :

Now, configure DKIM signing, which rspamd will handle for every sent email. The selector

must match the one entered in the DNS record previously:

In /usr/local/etc/rspamd/local.d/dkim_signing.conf :

To enable support for some “known” phisher lists, create
/usr/local/etc/rspamd/local.d/phishing.conf :

For SURBL (Spam URI Real-time Blocklists) configuration in
/usr/local/etc/rspamd/local.d/surbl.conf :

For URL reputation checks in /usr/local/etc/rspamd/local.d/url_reputation.conf :

Code

servers = "192.168.123.4";
password = "cafecafe";



1
2

Code

spf_cache_size = 1k;
spf_cache_expire = 1d;
max_dns_nesting = 10;
max_dns_requests = 30;
min_cache_ttl = 5m;



1
2
3
4
5

Code

domain {
 example.com {
 path = "/usr/local/etc/mail/dkim/example.com.key";
 selector = "mail";
 }
}



1
2
3
4
5
6

Code

Configuration options can be added here`
openphish_enabled = true;
phishtank_enabled = true;



1
2
3

Code

follow redirects when checking URLs in emails for spaminess
redirector_hosts_map = "/usr/local/etc/rspamd/redirectors.inc";



1
2

Code



And for caching some URL tags in Redis, in
/usr/local/etc/rspamd/local.d/url_tags.conf :

Rspamd should be ready for initial testing.

Now it’s time to configure Dovecot, which will handle the final phase of delivery and provide

mail access, as well as use Sieve for filtering and rule application.

The first step is to start with a default configuration:

cd /usr/local/etc/dovecot/ && cp -R example-config/* .

Next, modify some files. Start with conf.d/15-mailboxes.conf - add auto = create to

the main folders, like this:

check URLs within messages for spaminess
enabled = true;

1
2

Code

cache some URL tags in redis
enabled = true;



1
2

Code

namespace inbox {
 # These mailboxes are widely used and could perhaps be created automatica
 separator = .

 mailbox Drafts {
 special_use = \Drafts
 auto = create
 }
 mailbox Junk {
 special_use = \Junk
 auto = create
 }
 mailbox Trash {
 special_use = \Trash
 auto = create
 }

 # For \Sent mailboxes there are two widely used names. We'll mark both of
 # them as \Sent. User typically deletes one of them if duplicates are cre
 mailbox Sent {
 special_use = \Sent
 auto = create
 }
 mailbox "Sent Messages" {
 special_use = \Sent
 }
}



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Modify /usr/local/etc/dovecot/dovecot.conf to include:

In conf.d/10-auth.conf , switch to system authentication with passwdfile:

Then, set up the passdb and userdb configuration in conf.d/auth-

passwdfile.conf.ext . Replace the entire file with these contents:

Edit conf.d/10-ssl.conf to update ssl_key and ssl_cert :

In conf.d/20-imap.conf , include:

And in conf.d/20-lmtp.conf :

Set the mail location in conf.d/10-mail.conf :

Code

protocols = imap lmtp sieve



1

Code

#!include auth-system.conf.ext
!include auth-passwdfile.conf.ext



1
2

Code

passdb {
 driver = passwd-file
 args = scheme=CRYPT /usr/local/etc/mail/passwd
}

userdb {
 default_fields = uid=vmail gid=vmail home=/var/vmail/%d/%n
 args = /usr/local/etc/mail/passwd
 driver = passwd-file
}



 1
 2
 3
 4
 5
 6
 7
 8
 9
10

Code

ssl_cert = </usr/local/etc/letsencrypt/archive/example.com/fullchain1.pem
ssl_key = </usr/local/etc/letsencrypt/archive/example.com/privkey1.pem



1
2

Code

(...)
mail_plugins = $mail_plugins imap_sieve zlib
mail_max_userip_connections = 100



1
2
3

Code

protocol lmtp {
 mail_fsync = optimized
 mail_plugins = $mail_plugins sieve
}



1
2
3
4

Code



Now, let’s configure Sieve in conf.d/90-plugin.conf :

And in conf.d/20-managesieve.conf.ext :

mail_location = maildir:/var/vmail/%d/%n

maildir_stat_dirs=yes

1
2
3

Code

plugin {
 #setting_name = value
 sieve_plugins = sieve_imapsieve sieve_extprograms
 sieve_global_extensions = +vnd.dovecot.pipe +vnd.dovecot.environment
 imapsieve_mailbox1_name = Junk
 imapsieve_mailbox1_causes = COPY APPEND
 imapsieve_mailbox1_before = file:/usr/local/lib/dovecot/sieve/report-spam

 imapsieve_mailbox2_name = *
 imapsieve_mailbox2_from = Junk
 imapsieve_mailbox2_causes = COPY
 imapsieve_mailbox2_before = file:/usr/local/lib/dovecot/sieve/report-ham.

 imapsieve_mailbox3_name = Inbox
 imapsieve_mailbox3_causes = APPEND
 imapsieve_mailbox3_before = file:/usr/local/lib/dovecot/sieve/report-ham.
 sieve_pipe_bin_dir = /usr/local/lib/dovecot/sieve

 #Move the spam to Junk folder
 sieve_after = /usr/local/lib/dovecot/sieve/spam-to-folder.sieve
}



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

Code

service managesieve-login {
 inet_listener sieve {
 port = 4190
 }

 service_count = 1
 vsz_limit = 64M
}

service managesieve {
 process_limit = 1024
}

protocol sieve {
 mail_max_userip_connections = 10

 # Configuration for Sieve script management via ManageSieve protocol


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

This setup outlines the Dovecot configuration necessary for handling mail delivery, access,

and Sieve-based filtering. With these settings, Dovecot is prepared to manage both

incoming and outgoing mails securely and efficiently, including support for managing Sieve

scripts via the ManageSieve protocol.

Sieve scripts train Rspamd on spam and ham. Moving email into and out of the junk folder

triggers an event to train Rspamd.

These files are located at /usr/local/lib/dovecot/sieve .

Create the report-ham.sieve file:

Create the report-spam.sieve file:

Create the spam-to-folder.sieve file:

}

plugin {
 sieve_pipe_bin_dir = /usr/local/lib/dovecot/sieve
 sieve = file:/var/vmail/%d/%n/sieve;active=/var/vmail/%d/%n/.dovecot.siev
 sieve_user_log = file:/var/vmail/%d/%n/sieve/sieve_error.log
}

18
19
20
21
22
23
24

Code

require ["vnd.dovecot.pipe", "copy", "imapsieve", "environment", "variables

if environment :matches "imap.mailbox" "*" {
 set "mailbox" "${1}";
}

if string "${mailbox}" "Trash" {
 stop;
}

if environment :matches "imap.user" "*" {
 set "username" "${1}";
}

pipe :copy "sa-learn-ham.sh" ["${username}"];



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Code

require ["vnd.dovecot.pipe", "copy", "imapsieve", "environment", "variables

if environment :matches "imap.user" "*" {
 set "username" "${1}";
}

pipe :copy "sa-learn-spam.sh" ["${username}"];



1
2
3
4
5
6
7

Compile the files:

Create the following two shell scripts in /usr/local/lib/dovecot/sieve .

Add the following to sa-learn-ham.sh :

Add the following to sa-learn-spam.sh :

Make the files executable:

Everything has been configured correctly. However, a fundamental part is missing: the

users.

To begin, encrypt the password by executing:

smtpctl encrypt

Input the plain password and hit ENTER. Copy the displayed encrypted password for the

next step. Now, insert the entry into /usr/local/etc/mail/passwd :

Remember to replace the placeholder with your encrypted password and ensure there are

six colons at the end.

Code

require ["fileinto","mailbox"];

if header :contains "X-Spam" "Yes" {
 fileinto :create "Junk";
 stop;
}



1
2
3
4
5
6

Code

sievec report-ham.sieve
sievec report-spam.sieve
sievec spam-to-folder.sieve



1
2
3

Bash

#!/bin/sh
exec /usr/local/bin/rspamc -d "${1}" learn_ham



1
2

Bash

#!/bin/sh
exec /usr/local/bin/rspamc -d "${1}" learn_spam



1
2

Code

chmod 755 sa-learn-ham.sh
chmod 755 sa-learn-spam.sh


1
2

Code

foo@example.com:your encrypted password goes here::::::



1

Finally, add the virtual user and associate it with the vmail system user in

/usr/local/etc/mail/virtuals :

Note: Additional aliases can be included, such as:

Let’s enable and start the services:

At this point, take a look at the logs (especially /var/log/maillog) to get an idea of what’s

happening. If everything is running correctly, you can now proceed with some tests. Any

mail client (such as Thunderbird, etc.) should be able to connect via IMAP and send emails

using SMTP, thanks to authentication. Remember that the username corresponds to the one

entered in the /usr/local/etc/mail/passwd file and typically matches the full email

address.

Once everything is in order, you can set the MX record of the domain “example.com” to

“mail.example.com”.

One of the key tests to perform is to send an email to a Gmail inbox. If the email is correctly

delivered and not marked as Spam, there’s a good chance that the setup is correct. There

are also several online tools available that can provide useful insights into any configuration

errors.

You have just installed and operationalized a complete mail server.

It is now possible to proceed with part 2, which involves the installation of Nextcloud and

Snappymail, in order to have a comprehensive groupware system, while keeping one’s data

on their own servers.

Links:

This article was inspired by several other articles available online that provided me with a lot

of useful information. Here is a non-exhaustive list:

A Comprehensive Guide to Setting Up Your Mail Server

Self-Hosted Email Services on OpenBSD

Code

foo@example.com vmail



1

Code

postmaster@example.com foo@example.com



1

Code

service rspamd enable
service rspamd start
service smtpd enable
service smtpd start
service dovecot enable
service dovecot start



1
2
3
4
5
6

https://it-notes.dragas.net/2024/03/21/make-your-own-email-server-freebsd-adding-nextcloud-part2/
https://it-notes.dragas.net/2024/03/21/make-your-own-email-server-freebsd-adding-nextcloud-part2/
https://www.c0ffee.net/blog/mail-server-guide
https://www.tumfatig.net/2023/self-hosted-email-services-on-openbsd

Building a FreeBSD Mail Server: Part 1

An OpenBSD E-mail Server Using OpenSMTPD, Dovecot, Rspamd, and RainLoop

Setting up a mail server with OpenSMTPD, Dovecot and Rspamd

Related Content

Make Your Own VPN - FreeBSD, Wireguard, Ipv6 and Ad-Blocking Included

Make Your Own VPN - Wireguard, Ipv6 and Ad-Blocking Included

How We Are Migrating (Many Of) Our Servers From Linux to FreeBSD - Part 1 - System

and Jails Setup

How to Create a FreeBSD Jail Hosting XRDP and XFCE for Remote Desktop Access

Migrating From VM to Hierarchical Jails in FreeBSD

Updated on 08-03-2024

 Freebsd, Ipv6, Server, Networking, E-

Mail, Rspamd, Hosting, Tutorial, Security, Dovecot, Opemsmtpd,

Ownyourdata



https://www.davd.io/posts/2021-12-18-freebsd-mail-server-part-1/
https://docs.vultr.com/an-openbsd-e-mail-server-using-opensmtpd-dovecot-rspamd-and-rainloop
https://poolp.org/posts/2019-09-14/setting-up-a-mail-server-with-opensmtpd-dovecot-and-rspamd/
https://it-notes.dragas.net/2023/09/23/make-your-own-vpn-freebsd-wireguard-ipv6-and-ad-blocking-included/
https://it-notes.dragas.net/2023/04/03/make-your-own-vpn-wireguard-ipv6-and-ad-blocking-included/
https://it-notes.dragas.net/2022/02/05/how-we-are-migrating-many-of-our-servers-from-linux-to-freebsd-part-1-system-and-jails-setup/
https://it-notes.dragas.net/2022/02/05/how-we-are-migrating-many-of-our-servers-from-linux-to-freebsd-part-1-system-and-jails-setup/
https://it-notes.dragas.net/2023/12/13/how-to-create-a-freebsd-jail-hosting-xrdp-and-xfce-remote-access-desktop/
https://it-notes.dragas.net/2023/11/27/migrating-from-vm-to-hierarchical-jails-freebsd/
https://it-notes.dragas.net/tags/freebsd/
https://it-notes.dragas.net/tags/ipv6/
https://it-notes.dragas.net/tags/server/
https://it-notes.dragas.net/tags/networking/
https://it-notes.dragas.net/tags/e-mail/
https://it-notes.dragas.net/tags/e-mail/
https://it-notes.dragas.net/tags/rspamd/
https://it-notes.dragas.net/tags/hosting/
https://it-notes.dragas.net/tags/tutorial/
https://it-notes.dragas.net/tags/security/
https://it-notes.dragas.net/tags/dovecot/
https://it-notes.dragas.net/tags/opemsmtpd/
https://it-notes.dragas.net/tags/ownyourdata/

